If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2r^2-2r-4=0
a = 2; b = -2; c = -4;
Δ = b2-4ac
Δ = -22-4·2·(-4)
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-6}{2*2}=\frac{-4}{4} =-1 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+6}{2*2}=\frac{8}{4} =2 $
| M÷4-m=6 | | 5x-10=20x | | x/23=4/46 | | (a-149-3=28 | | 42/0.5=n | | x+6=2(x-4) | | 5/x=200/8 | | x-(300-x)=200 | | 5x-4=8÷2 | | 3x+x+3x+x=560 | | |4x+22|=|5x-4| | | $(x^2+3x+2)(x^2+7x+12)+(x^2+5x-6)$=0 | | 2.4n+1.2-0.12=7.08 | | 11x-7=90 | | 6x-8+2x+2+90=180 | | 396=(13+2x)(17+2x) | | 11x=-47 | | 54+36+x=180 | | 6u^2+24u-72=0 | | (6x)+(x-9)=180 | | 4(1.08)^x+13=13 | | y=10-10^-2y | | y=10-10^-y | | -5+5t=180 | | 15+6x=-45+8x | | 17a=41a=3 | | -15+6x=45+8x | | 47+19x=180 | | -5x^2+30x-165=0 | | 19x+57=180 | | 2x(32)×2x(24)=100 | | 37x+106=180 |